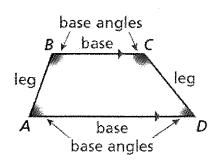
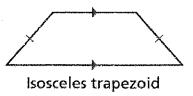
Trapezoids and Kites


Vocabulary:

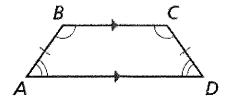
Trapezoid


- a quadrilateral with exactly one pair of parallel sides
- the parallel sides are the bases
- the base angles of a trapezoid are two consecutive angles whose common side is a base
- a trapezoid has two pairs of base angles

In trapezoid ABCD, $\angle A$ and $\angle D$ are one pair of base angles, and $\angle B$ and $\angle C$ are the second pair.

The nonparallel sides are the **legs** of the trapezoid.

If the legs of a trapezoid are congruent, then the trapezoid is an isosceles trapezoid

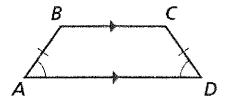


Isosceles Trapezoid Base Angles Theorem

if a trapezoid is isosceles, then each pair of base angles is congruent

if trapezoid ABCD is isosceles

then $\angle A\cong \angle D$ and $\angle B\cong \angle C$

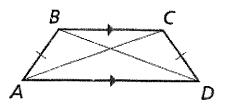


Isosceles Trapezoid Base Angles Converse

• if a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid

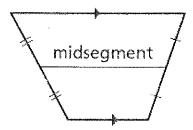
if
$$\angle A \cong \angle D$$
 (or if $\angle B \cong \angle C$)

then trapezoid ABCD is isosceles



Page 1 of 8

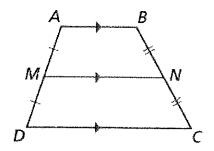
Isosceles Trapezoid Diagonals Theorem


· a trapezoid is isosceles if and only if its diagonals are congruent

Trapezoid ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$

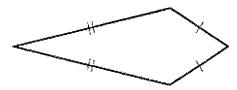
Midsegment of a Trapezoid

• the segment that connects the midpoints of its legs



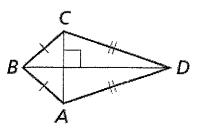
Trapezoid Midsegment Theorem

- the midsegment of a trapezoid is parallel to each base
- its length is one-half the sum of the lengths of the bases


if \overline{MN} is the midsegment of trapezoid ABCD

then $\overline{MN} \mid \mid \overline{AB}$, $\overline{MN} \mid \mid \overline{DC}$, and $\overline{MN} = 1/2(AB + CD)$

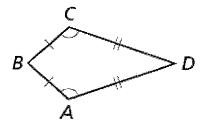
Kite


- a quadrilateral that has two pairs of consecutive congruent sides
- opposite sides are not congruent
- the congruent angles of a kite are formed by the noncongruent adjacent sides.

Kite Diagonals Theorem

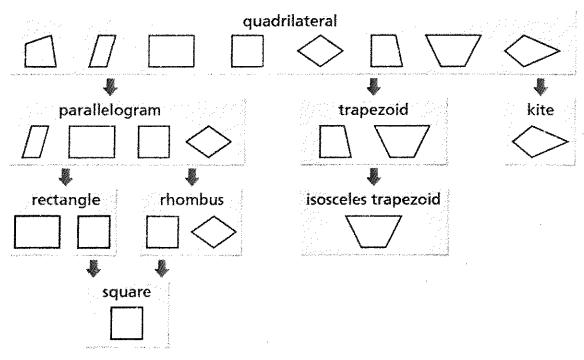
• if a quadrilateral is a kite, then its diagonals are perpendicular

if quadrilateral ABCD is a kite then $\overline{AC} \perp \overline{BD}$



Kite Opposite Angles Theorem

• if a quadrilateral is a kite, then exactly one pair of opposite angles are congruent


if quadrilateral ABCD is a kite and $\overline{BC}\cong\overline{BA}$

then $\angle A \cong \angle C$ and $\angle B \ncong \angle D$

Identifying Special Quadrilaterals

Each shape in the diagram has the properties of the shapes linked above it. For example, a rhombus has the properties of a parallelogram and a quadrilateral.

Done 2 of R

Example 1:

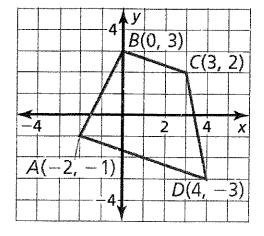
Prove that ABCD is a trapezoid and decide whether it is isosceles. Show all work.

Slope_{AB} = _____

Slope_{BC} = _____

Slope_{CD} = _____

SlopeAD =


AB = _____

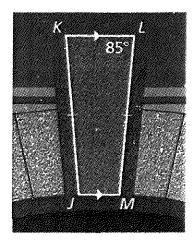
BC = _____

CD = ____

AD = _____

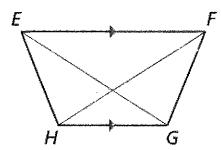
Isosceles? Yes/No

Example 2: Using Properties of Isosceles Trapezoids


The stone above the arch in the diagram is an isosceles trapezoid. Find $m \angle K$, $m \angle M$, and $m \angle J$. Explain your reasoning.

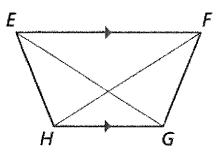
m∠J = _____

m∠K = _____


m∠M = _____

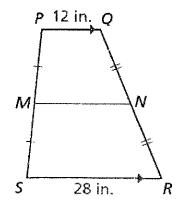
Reasoning:

Example 3:


If EG = FH, is trapezoid EFGH isosceles? Yes/No Explain your reasoning:

Example 4:

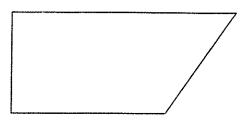
If $m\angle HEF$ = 70° and $m\angle FGH$ = 110°, is trapezoid EFGH isosceles? Yes/No


Explain your reasoning:

Example 5: Using the Midsegment of a Trapezoid

In the diagram, MN is the midsegment of trapezoid PQRS. Find MN. Show all work.

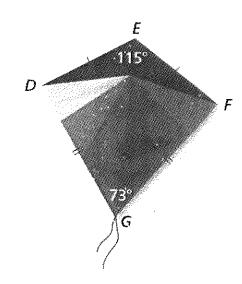
MN = _____



Example 6:

In trapezoid JKLM, $\angle J$ and $\angle M$ are right angles, and JK = 9 centimeters. The length of midsegment \overline{NP} of trapezoid JKLM is 12 centimeters.

Using a ruler, label trapezoid JKLM and sketch its midsegment. Find ML. Explain your reasoning.

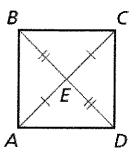

ML = _____

Example 7: Finding Angle Measures in a Kite

Find $m \angle D$ in the kite shown. Show all work.

m∠D = ____

Page 6 of 8

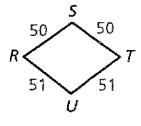

Example 8:		
	In a kite, the measures of the angles are $3x^{\circ}$, 75° , 90° , and 120° . Find the value of x What are the measures of the angles that are congruent? Show all work.	
	× =	
	Congruent angle measures =	

Example 9: Identifying a Quadrilateral

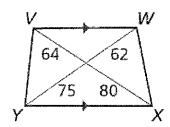
What is the most specific name for quadrilateral ABCD? Explain your reasoning.

Hint: ABCD looks like a square. But you must rely **only** on marked information when you interpret a diagram.

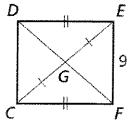
Quadrilateral:	
Reasoning:	


Example 10:

Quadrilateral DEFG has at least one pair of opposite sides congruent. What types of quadrilaterals meet this condition?


Example 11:

Give the most specific name for each quadrilateral. Explain your reasoning.


a.

b.

c.

Reasoning:

Reasoning:

Reasoning:

